The Elements of Statistical Learning
The Elements of Statistical Learning - Jerome Friedman,Trevor Hastie,Robert Tibshirani Nedostupné

Kniha ( pevná vazba )

    • Produkt je nedostupný.
E-shopové listy

Při zaslání zboží balíčkem

K nákupu nad 99 Kč dárek zdarma v hodnotě 19 Kč

E-shopové listy

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such… Přejít na celý popis

K tomuto produktu zákazníci kupují

Popis

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book''s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.

This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'''' data (p bigger than n), including multiple testing and false discovery rates.

Sdílet

Nakladatel
Springer-Verlag New York Inc.
Rozměr
164 x 242 x 37
jazyk
angličtina
Počet stran
745
Hmotnost
1208 g
isbn
978-0-387-84857-0
Vazba
pevná vazba
datum vydání
9.02.2009
ean
9780387848570

Hodnocení a recenze čtenářů Nápověda

0.0 z 5 0 hodnocení čtenářů

5 hvězdiček 4 hvězdičky 3 hvězdičky 2 hvězdičky 1 hvezdička

Přidejte své hodnocení knihy

Vývoj ceny

Vývoj ceny Nápověda

Získejte přehled o vývoji ceny za posledních 60 dní.

Maloobchodní cena Minimální prodejní cena: 2 145 Kč Nápověda