Quick Start Guide to Large Language Models

Kniha ( měkká vazba )

E-shopové listy

Při zaslání zboží balíčkem

K nákupu nad 99 Kč dárek zdarma v hodnotě 19 Kč

E-shopové listy

Tenkrát v Hollywoodu

Při zaslání zboží balíčkem

K nákupu nad 999 Kč dárek zdarma v hodnotě 397 Kč

Tenkrát v Hollywoodu

The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products Large Language Models (LLMs) like ChatGPT are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, pioneering data scientist and AI entrepreneur… Přejít na celý popis

K tomuto produktu zákazníci kupují

Popis

The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products

Large Language Models (LLMs) like ChatGPT are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems.

Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, hands-on exercises, and more. Along the way, he shares insights into LLMs'' inner workings to help you optimize model choice, data formats, parameters, and performance. You''ll find even more resources on the companion website, including sample datasets and code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and ChatGPT), Google (BERT, T5, and Bard), EleutherAI (GPT-J and GPT-Neo), Cohere (the Command family), and Meta (BART and the LLaMA family).

Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more Use APIs and Python to fine-tune and customize LLMs for your requirements Build a complete neural/semantic information retrieval system and attach to conversational LLMs for retrieval-augmented generation Master advanced prompt engineering techniques like output structuring, chain-ofthought, and semantic few-shot prompting Customize LLM embeddings to build a complete recommendation engine from scratch with user data Construct and fine-tune multimodal Transformer architectures using opensource LLMs Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF) Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind

"By balancing the potential of both open- and closed-source models, Quick Start Guide to Large Language Models stands as a comprehensive guide to understanding and using LLMs, bridging the gap between theoretical concepts and practical application."--Giada Pistilli, Principal Ethicist at HuggingFace

"A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field."--Pete Huang, author of The Neuron

Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Sdílet

Nakladatel
Pearson Education (US)
Rozměr
232 x 178 x 20
jazyk
angličtina
Vazba
měkká vazba
Hmotnost
502 g
isbn
978-0-13-819919-7
Počet stran
288
datum vydání
3.10.2023
ean
9780138199197

Hodnocení a recenze čtenářů Nápověda

0.0 z 5 0 hodnocení čtenářů

5 hvězdiček 4 hvězdičky 3 hvězdičky 2 hvězdičky 1 hvezdička

Přidejte své hodnocení knihy

Vývoj ceny

Vývoj ceny Nápověda

Získejte přehled o vývoji ceny za posledních 60 dní.

Maloobchodní cena Minimální prodejní cena: 1 254 Kč Nápověda