Math and Architectures of Deep Learning

Kniha ( měkká vazba )

E-shopové listy

Při zaslání zboží balíčkem

K nákupu nad 99 Kč dárek zdarma v hodnotě 19 Kč

E-shopové listy

Tenkrát v Hollywoodu

Při zaslání zboží balíčkem

K nákupu nad 999 Kč dárek zdarma v hodnotě 397 Kč

Tenkrát v Hollywoodu

The mathematical paradigms that underlie deep learning typically start out as hard-to-read academic papers, often leaving engineers in the dark about how their models actually function.  Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical… Přejít na celý popis

K tomuto produktu zákazníci kupují

Popis

The mathematical paradigms that underlie deep learning typically start out as hard-to-read academic papers, often leaving engineers in the dark about how their models actually function.  Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. Written by deep learning expert Krishnendu Chaudhury, you''ll peer inside the “black box” to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. about the technology It''s important to understand how your deep learning models work, both so that you can maintain them efficiently and explain them to other stakeholders. Learning mathematical foundations and neural network architecture can be challenging, but the payoff is big. You''ll be free from blind reliance on pre-packaged DL models and able to build, customize, and re-architect for your specific needs. And when things go wrong, you''ll be glad you can quickly identify and fix problems. about the book Math and Architectures of Deep Learning sets out the foundations of DL in a way that''s both useful and accessible to working practitioners. Each chapter explores a new fundamental DL concept or architectural pattern, explaining the underpinning mathematics and demonstrating how they work in practice with well-annotated Python code. You''ll start with a primer of basic algebra, calculus, and statistics, working your way up to state-of-the-art DL paradigms taken from the latest research. By the time you''re done, you''ll have a combined theoretical insight and practical skills to identify and implement DL architecture for almost any real-world challenge.

Sdílet

Nakladatel
Manning Publications
Rozměr
234 x 187 x 34
jazyk
angličtina
Vazba
měkká vazba
Hmotnost
996 g
isbn
978-1-61729-648-2
Počet stran
450
datum vydání
15.03.2024
ean
9781617296482

Hodnocení a recenze čtenářů Nápověda

0.0 z 5 0 hodnocení čtenářů

5 hvězdiček 4 hvězdičky 3 hvězdičky 2 hvězdičky 1 hvezdička

Přidejte své hodnocení knihy

Vývoj ceny

Vývoj ceny Nápověda

Získejte přehled o vývoji ceny za posledních 60 dní.

Maloobchodní cena Minimální prodejní cena: 1 749 Kč Nápověda